

B.M.S COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU -560004 SEMESTER END EXAMINATION – APRIL/ MAY 2023

M.Sc. Mathematics – III Semester

DIFFERENTIAL GEOMETRY

Course Code: MM303T Duration: 3 Hours

QP Code: 13003 Max. Marks: 70

(5+3+6)

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

- 1. (a) Define directional derivative of a differentiable real valued function f on E^3 . If $v_p = (v_1, v_2, v_3)_p$ is a tangent vector to E^3 then prove that $v_p[f] = \sum_{i=1}^3 v_i \frac{\partial f(p)}{\partial x_i}$ and deduce that $U_i[f] = \frac{\partial f}{\partial x_i}$, i = 1,2,3.
 - (b) If $V = xU_1 + yU_3$ and $W = 2x^2U_2 U_3$, then compute W xV and find its value at the point p = (-1,0,2).

(c) For any tangent vector v_p to E^3 at p, and for any functions f, g and any real constants a, b, prove that (i) $v_p[af + bg] = a v_p[f] + b v_p[g]$ (ii) $v_n[fg] = v_n[f] g(p) + f(p) v_n[g]$

2. (a) Explain reparameterization of a curve in E³. If β is a reparameterization of a curve α by h, then prove that β'(s) = α'(h(s)) dh(s)/ds. Further verify the above formula for α(t) = (2 cos²t, sin 2t, 2 sint) and h(s) = sin⁻¹s, 0 < s < 1.
(b) Let f and g be functions, φ and ψ are 1-forms. Then prove that

(b) Let f and g be functions, ϕ and ϕ are 1-forms. Then prove that $d(\phi \land \psi) = (d\phi \land \psi) - (\phi \land d\psi)$

Further verify the above formula for $\phi = \frac{dx}{y}$ and $\psi = z \, dy$. (7+7)

3. (a) Compute the Frenet apparatus K, τ, T, N, B of the unit speed curve $\beta(s) = \left(\frac{4}{5}\cos s, 1 - \sin s, \frac{-3}{5}\cos s\right)$

(b) Show that a curve lying on sphere of radius 'a' has curvature $k \ge \frac{1}{a}$.

(c) If $W = \sum W_i U_i$ and V is a vector field on E^3 , then show that $\nabla_V W = \sum V[W_i]U_i$. Use it to compute $\nabla_V W$ for $V = (y - x)U_1 + xy U_3$ and $W = x^2 U_1 + yz U_3$. (5+5+4)

4. (a) Define derivative map F_* of the mapping $F: E^n \to E^m$. If $\beta = F(\alpha)$ is an image of a curve α in E^n , then prove that $\beta' = F_*(\alpha')$ and further show that F_* is a linear transformation.

(b) If A = (a_{ij}), i, j = 1,2,3 and W = (w_{ij}) are respectively attitude matrix and matrix of connection forms of a frame field E₁, E₂, E₃ then prove that W = (dA)A^t.
(c) Compute the connection forms for a cylindrical frame field. (6+4+4)

- 5. (a) Define proper patch. Verify that X(u, v) = (u, uv, v) is a patch.
 - (b) Define parametrization of a region. Obtain parametrization of torus of revolution.

(c) If g is a real valued differentiable function on E^3 and C is a real constant, then prove that $M = \{(x, y, z) \in E^3 : g(x, y, z) = C\}$ is a surface in E^3 provided $dg \neq 0$ at any point of M. Use it to prove that sphere in E^3 is a surface in E^3 . (4+4+6)

6. (a) If X is a patch in a surface M and X_* is a derivative map of X. Show that $X_*(U_1) = X_u$ and

 $X_*(U_2) = X_v$, where U_1 , U_2 is the natural frame field on E^3 .

(b) Let F: M → N be a mapping of surfaces and let ξ and η be forms on N. Then prove the following
(i) F*(ξ ∧ η) = F*ξ ∧ F*η
(ii) F*(dξ) = d(F*ξ)

7. (a) Let α be a curve in $M \subseteq E^3$. If U is a unit normal to M restricted to the curve α . Then show

that $S(\alpha') = -U'$ and $\alpha'' \cdot U = S(\alpha') \cdot \alpha'$

- (b) Define an umbilic point. If p is an umbilic point of a surface M in E^3 , then show that the shape operator S at p is just scalar multiplication by $k = k_1 = k_2$, where k_1 and k_2 are principal curvatures of M.
- (c) Define Gaussian and mean curvature. Show that $k = k_1 k_2$, $H = \frac{1}{2}(k_1 + k_2)$. (4+7+3)

8. (a) With usual notations prove that $k(x) = \frac{ln - m^2}{EG - F^2}$, $H(x) = \frac{Gl + En - 2Fm}{2(EG - F^2)}$.

(b) Compute k, H, k_1, k_2 for the surface Helicoid $X(u, v) = (u \cos v, u \sin v, bv), b \neq 0$.

(4+6+4)

(c) Determine the geodesics in planes and spheres in E^3 .
