UUCMS No.

\square

B.M.S COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU -560004 SEMESTER END EXAMINATION - APRIL/ MAY 2023

M.Sc. Mathematics - III Semester
 DIFFERENTIAL GEOMETRY

Course Code: MM303T

QP Code: 13003
Duration: 3 Hours
Max. Marks: 70

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

1. (a) Define directional derivative of a differentiable real valued function f on E^{3}. If $v_{p}=\left(v_{1}, v_{2}, v_{3}\right)_{p}$ is a tangent vector to E^{3} then prove that $v_{p}[f]=\sum_{i=1}^{3} v_{i} \frac{\partial f(p)}{\partial x_{i}}$ and deduce that $U_{i}[f]=\frac{\partial f}{\partial x_{i}}, i=1,2,3$.
(b) If $V=x U_{1}+y U_{3}$ and $W=2 x^{2} U_{2}-U_{3}$, then compute $W-x V$ and find its value at the point $p=(-1,0,2)$.
(c) For any tangent vector v_{p} to E^{3} at p, and for any functions f, g and any real constants a, b, prove that (i) $v_{p}[a f+b g]=a v_{p}[f]+b v_{p}[g]$
(ii) $v_{p}[f g]=v_{p}[f] g(p)+f(p) v_{p}[g]$
2. (a) Explain reparameterization of a curve in E^{3}. If β is a reparameterization of a curve α by h, then prove that $\beta^{\prime}(s)=\alpha^{\prime}(h(s)) \frac{d h(s)}{d s}$. Further verify the above formula for $\alpha(t)=$ $\left(2 \cos ^{2} t, \sin 2 t, 2 \sin t\right)$ and $h(s)=\sin ^{-1} s, \quad 0<s<1$.
(b) Let f and g be functions, ϕ and ψ are 1-forms. Then prove that

$$
\begin{equation*}
d(\phi \wedge \psi)=(d \phi \wedge \psi)-(\phi \wedge d \psi) \tag{7+7}
\end{equation*}
$$

Further verify the above formula for $\phi=\frac{d x}{y}$ and $\psi=z d y$.
3. (a) Compute the Frenet apparatus K, τ, T, N, B of the unit speed curve

$$
\beta(s)=\left(\frac{4}{5} \cos s, 1-\sin s, \frac{-3}{5} \cos s\right)
$$

(b) Show that a curve lying on sphere of radius ' a ' has curvature $k \geq \frac{1}{a}$.
(c) If $W=\sum W_{i} U_{i}$ and V is a vector field on E^{3}, then show that $\nabla_{V} W=\sum V\left[W_{i}\right] U_{i}$. Use it to compute $\nabla_{V} W$ for $V=(y-x) U_{1}+x y U_{3}$ and $W=x^{2} U_{1}+y z U_{3}$.
4. (a) Define derivative map F_{*} of the mapping $F: E^{n} \rightarrow E^{m}$. If $\beta=F(\alpha)$ is an image of a curve α in E^{n}, then prove that $\beta^{\prime}=F_{*}\left(\alpha^{\prime}\right)$ and further show that F_{*} is a linear transformation.
(b) If $A=\left(a_{i j}\right), i, j=1,2,3$ and $W=\left(w_{i j}\right)$ are respectively attitude matrix and matrix of connection forms of a frame field E_{1}, E_{2}, E_{3} then prove that $W=(d A) A^{t}$.
(c) Compute the connection forms for a cylindrical frame field.
5. (a) Define proper patch. Verify that $X(u, v)=(u, u v, v)$ is a patch.
(b) Define parametrization of a region. Obtain parametrization of torus of revolution.
(c) If g is a real valued differentiable function on E^{3} and C is a real constant, then prove that $M=\left\{(x, y, z) \in E^{3}: g(x, y, z)=C\right\} \quad$ is a surface in E^{3} provided $d g \neq 0$ at any point of M. Use it to prove that sphere in E^{3} is a surface in E^{3}.
6. (a) If X is a patch in a surface M and X_{*} is a derivative map of X. Show that $X_{*}\left(U_{1}\right)=X_{u}$ and
$X_{*}\left(U_{2}\right)=X_{v}$, where U_{1}, U_{2} is the natural frame field on E^{3}.
(b) Let $F: M \rightarrow N$ be a mapping of surfaces and let ξ and η be forms on N. Then prove the following

$$
\begin{equation*}
\text { (i) } F^{*}(\xi \wedge \eta)=F^{*} \xi \wedge F^{*} \eta \tag{7+7}
\end{equation*}
$$

(ii) $F^{*}(d \xi)=d\left(F^{*} \xi\right)$
7. (a) Let α be a curve in $M \subseteq E^{3}$. If U is a unit normal to M restricted to the curve α. Then show that $S\left(\alpha^{\prime}\right)=-U^{\prime}$ and $\alpha^{\prime \prime} . U=S\left(\alpha^{\prime}\right) . \alpha^{\prime}$
(b) Define an umbilic point. If p is an umbilic point of a surface M in E^{3}, then show that the shape operator S at p is just scalar multiplication by $k=k_{1}=k_{2}$, where k_{1} and k_{2} are principal curvatures of M.
(c) Define Gaussian and mean curvature. Show that $k=k_{1} k_{2}, H=\frac{1}{2}\left(k_{1}+k_{2}\right)$.
8. (a) With usual notations prove that $k(x)=\frac{l n-m^{2}}{E G-F^{2}} \quad, \quad H(x)=\frac{G l+E n-2 F m}{2\left(E G-F^{2}\right)}$.
(b) Compute k, H, k_{1}, k_{2} for the surface Helicoid $X(u, v)=(u \cos v, u \sin v, b v), b \neq 0$.
(c) Determine the geodesics in planes and spheres in E^{3}.
$(4+6+4)$

